214 research outputs found

    Water scarcity and managing seasonal water crisis: lessons from the Kirindi Oya Project in Sri Lanka

    Get PDF
    Irrigation management / Water management / Irrigation programs / Irrigated farming / Rain / Crop production / Crop yield / Rice / Case studies / River basins / Catchment areas / Irrigation scheduling / Water allocation / Water use efficiency / Water scarcity / Water shortage / Water demand / Reservoirs / Flow / Farmer participation / Farmer-agency interactions / Farmers' associations / Seasonal variation / Water distribution / Sri Lanka / Kirindi Oya / Ellegala / Lunugamwehera Reservoir

    Water productivity in Zhanghe Irrigation System: issues of scale

    Get PDF
    Irrigation systemsWater productivityReservoirsWater useWater stressWater conservationRicePaddy fieldsCrop yield

    Karhunen-Loeve representation of stochastic ocean waves

    Get PDF
    A new stochastic representation of a seastate is developed based on the Karhunen–Loeve spectral decomposition of stochastic signals and the use of Slepian prolate spheroidal wave functions with a tunable bandwidth parameter. The new representation allows the description of stochastic ocean waves in terms of a few independent sources of uncertainty when the traditional representation of a seastate in terms of Fourier series requires an order of magnitude more independent components. The new representation leads to parsimonious stochastic models of the ambient wave kinematics and of the nonlinear loads and responses of ships and offshore platforms. The use of the new representation is discussed for the derivation of critical wave episodes, the derivation of up-crossing rates of nonlinear loads and responses and the joint stochastic representation of correlated wave and wind profiles for use in the design of fixed or floating offshore wind turbines. The forecasting is also discussed of wave elevation records and vessel responses for use in energy yield enhancement of compliant floating wind turbines.ALSTOM (Firm)Ente nazionale per l'energia elettricab_TE

    Spectral Analysis of Multi-dimensional Self-similar Markov Processes

    Full text link
    In this paper we consider a discrete scale invariant (DSI) process {X(t),t∈R+}\{X(t), t\in {\bf R^+}\} with scale l>1l>1. We consider to have some fix number of observations in every scale, say TT, and to get our samples at discrete points αk,k∈W\alpha^k, k\in {\bf W} where α\alpha is obtained by the equality l=αTl=\alpha^T and W={0,1,...}{\bf W}=\{0, 1,...\}. So we provide a discrete time scale invariant (DT-SI) process X(⋅)X(\cdot) with parameter space {αk,k∈W}\{\alpha^k, k\in {\bf W}\}. We find the spectral representation of the covariance function of such DT-SI process. By providing harmonic like representation of multi-dimensional self-similar processes, spectral density function of them are presented. We assume that the process {X(t),t∈R+}\{X(t), t\in {\bf R^+}\} is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally we find the spectral density matrix of such DT-SIM process and show that its associated TT-dimensional self-similar Markov process is fully specified by {RjH(1),RjH(0),j=0,1,...,T−1}\{R_{j}^H(1),R_{j}^H(0),j=0, 1,..., T-1\} where RjH(τ)R_j^H(\tau) is the covariance function of jjth and (j+τ)(j+\tau)th observations of the process.Comment: 16 page

    Endoscopic colorectal cancer screening: a cost-saving analysis

    Get PDF
    BACKGROUND: Comprehensive analyses have shown that screening for cancer usually induces net costs. In this study, the possible costs and savings of endoscopic colorectal cancer screening are explored to investigate whether the induced savings may compensate for the costs of screening. METHODS: A simulation model for evaluation of colorectal cancer screening, MISCAN-COLON, is used to predict costs and savings for the U.S. population, assuming that screening is performed during a period of 30 years. Plausible baseline parameter values of epidemiology, natural history, screening test characteristics, and unit costs are based on available data and expert opinion. Important parameters are varied to extreme but plausible values. RESULTS: Given the expert opinion-based assumptions, a program based on every 5-year sigmoidoscopy screenings could result in a net savings of direct health care costs due to prevention of cancer treatment costs that compensate for the costs of screening, diagnostic follow-up, and surveillance. This result persists when costs and health effects are discounted at 3%. The "break-even" point, the time required before savings exceed costs, is 35 years for a screening program that terminates after 30 years and 44 years for a screening program that continues on indefinitely. However, net savings increase or turn into net costs when alternative assumptions about natural history of colorectal cancer, costs of screening, surveillance, and diagnostics are considered. CONCLUSIONS: Given the present, limited knowledge of the disease process of colorectal cancer, test characteristics, and costs, it may well be that the induced savings by endoscopic colorectal cancer screening completely compensate for the costs

    Model Reduction in Flexible-Aircraft Dynamics with Large Rigid-Body Motion

    No full text
    This paper investigates the model reduction, using balanced realizations, of the unsteady aerodynamics of maneuvering flexible aircraft. The aeroelastic response of the vehicle, which may be subject to large wing deformations at trimmed flight, is captured by coupling a displacement-based, flexible-body dynamics formulation with an aerodynamic model based on the unsteady vortex lattice method. Consistent linearization of the aeroelastic problem allows the projection of the structural degrees of freedom on a few vibration modes of the unconstrained vehicle, but preserves all couplings between the rigid and elastic motions and permits the vehicle fiight dynamics to have arbitrarily-large angular velocities. The high-order aerodynamic system, which defines the mapping between the small number of generalized coordinates and unsteady aerodynamic loads, is then reduced using the balanced truncation method. Numerical studies on a representative high-altitude, long-endurance aircraft show a very substantial reduction in model size, by up to three orders of magnitude, that leads to model orders (and computational cost) similar to those in conventional frequency-based methods but with higher modeling fidelity to compute maneuver loads. Closed-loop results for the Goland wing finally demonstrate the application of this approach in the synthesis of a robust flutter suppression controller. © 2013 by Henrik Hesse and Rafael Palacios

    PCA-based lung motion model

    Full text link
    Organ motion induced by respiration may cause clinically significant targeting errors and greatly degrade the effectiveness of conformal radiotherapy. It is therefore crucial to be able to model respiratory motion accurately. A recently proposed lung motion model based on principal component analysis (PCA) has been shown to be promising on a few patients. However, there is still a need to understand the underlying reason why it works. In this paper, we present a much deeper and detailed analysis of the PCA-based lung motion model. We provide the theoretical justification of the effectiveness of PCA in modeling lung motion. We also prove that under certain conditions, the PCA motion model is equivalent to 5D motion model, which is based on physiology and anatomy of the lung. The modeling power of PCA model was tested on clinical data and the average 3D error was found to be below 1 mm.Comment: 4 pages, 1 figure. submitted to International Conference on the use of Computers in Radiation Therapy 201

    Precision measurements of the top quark mass from the Tevatron in the pre-LHC era

    Full text link
    The top quark is the heaviest of the six quarks of the Standard Model. Precise knowledge of its mass is important for imposing constraints on a number of physics processes, including interactions of the as yet unobserved Higgs boson. The Higgs boson is the only missing particle of the Standard Model, central to the electroweak symmetry breaking mechanism and generation of particle masses. In this Review, experimental measurements of the top quark mass accomplished at the Tevatron, a proton-antiproton collider located at the Fermi National Accelerator Laboratory, are described. Topologies of top quark events and methods used to separate signal events from background sources are discussed. Data analysis techniques used to extract information about the top mass value are reviewed. The combination of several most precise measurements performed with the two Tevatron particle detectors, CDF and \D0, yields a value of \Mt = 173.2 \pm 0.9 GeV/c2c^2.Comment: This version contains the most up-to-date top quark mass averag
    • …
    corecore